Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients

نویسندگان

  • Samantha By
  • Junzhong Xu
  • Bailey A. Box
  • Francesca R. Bagnato
  • Seth A. Smith
چکیده

INTRODUCTION There is a need to develop imaging methods sensitive to axonal injury in multiple sclerosis (MS), given the prominent impact of axonal pathology on disability and outcome. Advanced multi-compartmental diffusion models offer novel indices sensitive to white matter microstructure. One such model, neurite orientation dispersion and density imaging (NODDI), is sensitive to neurite morphology, providing indices of apparent volume fractions of axons (vin), isotropic water (viso) and the dispersion of fibers about a central axis (orientation dispersion index, ODI). NODDI has yet to be studied for its sensitivity to spinal cord pathology. Here, we investigate the feasibility and utility of NODDI in the cervical spinal cord of MS patients. METHODS NODDI was applied in the cervical spinal cord in a cohort of 8 controls and 6 MS patients. Statistical analyses were performed to test the sensitivity of NODDI-derived indices to pathology in MS (both lesion and normal appearing white matter NAWM). Diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) analysis were also performed to compare with NODDI. RESULTS A decrease in NODDI-derived vin was observed at the site of the lesion (p < 0.01), whereas a global increase in ODI was seen throughout white matter (p < 0.001). DKI-derived mean kurtosis (MK) and radial kurtosis (RK) and DTI-derived fractional anisotropy (FA) and radial diffusivity (RD) were all significantly different in MS patients (p < 0.02), however NODDI provided higher contrast between NAWM and lesion in all MS patients. CONCLUSION NODDI provides unique contrast that is not available with DKI or DTI, enabling improved characterization of the spinal cord in MS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area

Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...

متن کامل

Cervical and ocular vestibular evoked myogenic potentials in multiple sclerosis participants

  Background: Multiple sclerosis (MS) is a chronic neurological disease that affects brain and spinal cord. The infratentorial region contains the cerebellum and brainstem. Vestibular evoked myogenic potentials (VEMPs) are short-latency myogenic responses. Cervical vestibular evoked myogenic potential (cVEMP) is a manifestation of vestibulocolic reflex and ocular vestibular evoked myogenic pote...

متن کامل

Spinal Cord Analysis in People with Multiple Sclerosis

Background. Multiple Sclerosis (MS) is an autoimmune, inflammatory, and chronic disease which, under the effect of the wastes of myelin degradation occurs in the white matter of the brain, spinal cord, and visual nerves. The main complications of this disease are fatigue, muscle cramps, tremor, imbalance, and walking imbalance. Objectives. The purpose of this study is to investigate the spine ...

متن کامل

Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?

OBJECTIVE Conventional magnetic resonance imaging (MRI) of the multiple sclerosis spinal cord is limited by low specificity regarding the underlying pathological processes, and new MRI metrics assessing microscopic damage are required. We aim to show for the first time that neurite orientation dispersion (i.e., variability in axon/dendrite orientations) is a new biomarker that uncovers previous...

متن کامل

Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo

Here we present the application of neurite orientation dispersion and density imaging (NODDI) to the healthy spinal cord in vivo. NODDI provides maps such as the intra-neurite tissue volume fraction (vin), the orientation dispersion index (ODI) and the isotropic volume fraction (viso), and here we investigate their potential for spinal cord imaging. We scanned five healthy volunteers, four of w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017